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Abstract
This paper attempts to solve the autonomous driv-
ing problem for an ideal, annotated driving and
obstacle-free environment using an online Rein-
forcement Learning (RL) based approach. The
self-vehicle is assumed to be equipped with sen-
sors that provide visual information about the
environment using a dashboard camera. The Q-
learning algorithm is used to train the agent on-
line using the CARLA interface, by discretizing
the state space constructed using the visual input,
with the help of tile-coding.

Starting with a brief introduction and the problem
description with an accompanying literature re-
view, this paper describes the approach used in
detail along with the experiments performed and
concludes with a high level discussion on poten-
tial improvements based on the results.

1. Introduction
Autonomous driving has always been an audacious vision-
ary goal to human-kind. Today we are closer to achieving
it than ever before, thanks to Artificial Intelligence and
Robotics’ continuously evolving fields and the improved
computational capabilities. Researchers from all over the
world are continually trying out new approaches to make
this dream come true. While most techniques look at a prob-
lem from a classified point of view, there have been some
attempts to find end-to-end solutions.

RL is considered one of the most substantial AI paradigms,
for the fact that it can be used to teach machines through
interaction with the environment and learn from their mis-
takes just like humans do. Despite its perceived utility, it has
not yet been successfully applied in automotive applications.
Motivated by the success of reinforcement learning on Atari
games and Go, we propose a framework for autonomous
driving using online reinforcement learning. This is of par-
ticular relevance as it is difficult to pose autonomous driving
as a supervised learning problem due to strong interactions
with the environment, including other vehicles, pedestrians,
and roadworks.

This paper presents an online learning approach to the task

of autonomous driving. While an online approach has the
perk of being able to learn simultaneously while driving,
but for the same reason, the computational requirements has
to be kept under a certain limit to be able to synchronously
learn and act. There has been a lot of research on the appli-
cation of RL algorithms for the task of automated driving,
however the approaches followed were majorly offline ones,
with learning updates only at the end of the episode, and
relatively lesser work has been done for the application of
online methods for the same. Moreover, a significantly large
fraction of the work done in this domain targets the problem
of lane driving, wherein the sole objective of the agent is
to minimize the time of travel while being allowed to go
off-track at times.

This paper aims to be able to perform the task of self-driving
in a more constraint city-like environment, with the require-
ment of always moving in the correct lane. The results
indicate that even with a surprisingly low-dimensional fea-
ture space, the RL based agent is able to learn to drive to a
good extent under the influence of an appropriately chosen
reward function. In accordance with the arguments above,
the upcoming sections present a comprehensive literature
review followed by brief description of the problem state-
ment.

2. Related Works
Various approaches have been taken taken to tackle the non-
trivial task of Autonomous driving.

Imitation Learning is one of the earliest approaches to
vision-based driving and has been quite successful. Re-
cent works have extended imitation learning approaches
to navigation in complicated urban environments. These
methods train on trajectories (Codevilla et al., 2018; Doso-
vitskiy et al., 2017b; Pomerleau, 1989) or rich sensory data
(Chen et al., 2020; Pan et al., 2017) collected by human
experts. Hence they are limited to the expert’s observations
and actions.

Model-based reinforcement learning approaches model
the environment to help train the policy. (Sutton, 1991),
Kalweit and Boedecker (Kalweit and Boedecker, 2017), Gu
et al. (Gu et al., 2016) use a forward model to generate
imagined trajectories. Feinberg et al. (Feinberg et al., 2018),
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Buckman et al. (Buckman et al., 2018) roll out forward
models over short horizons to improve Q-function or value
function approximation. Chen et al. (Chen et al., 2021)
factor the forward world model into the controllable agent
and a passively moving environment.

Deep Reinforcement Learning based approaches for au-
tonomous driving and navigation have recently shown a
lot of success with end-to-end training. Wolf et al. (Wolf
et al., 2017) used a Deep Q Network to learn autonomous
steering in simulation with discrete action space. Lillicrap
et al. (Lillicrap et al., 2015) developed a continuous control
algorithm capable of learning a deep neural policy to drive
the car on a simulated race-track. Chen et al. (Chen et al.,
2018) proposed a hierarchical deep RL approach capable of
solving complex temporal delayed tasks.

We have developed a novel model-free, vision-based ap-
proach which uses tile-coding and Q-learning to tackle the
lane following task. Our approach allows for online learning
and is relatively computationally inexpensive.

3. Problem Formulation
Speaking on a very broad scale, we wish to solve the au-
tonomous driving problem for an ideal, annotated driving
environment. An ideal, annotated environment will have
all the roads are appropriately marked with lanes, with all
the traffic signs in place, and other vehicles as a part of the
environment behave in a usual cooperative manner. The
self-vehicle is assumed to be equipped with sensors that
provide visual information about the environment.

Specifically here, we have used the CARLA Simulator (ver-
sion 0.9.9.4)(Dosovitskiy et al., 2017a), to simulate the
model of a small town with multiple double lane roads run-
ning across it. The CARLA Simulator allows us to spawn
a client vehicle on the server which can be controlled us-
ing a throttle and a steering wheel and the motion states
which change following the laws of physics can be observed.
CARLA supports a range of different sensors like an RGB
Camera, a depth Camera, Semantic segmentation camera,
LiDAR, Radar, Collision Sensor, etc. that can be attached
to the vehicle wherever we want to observe the surrounding
in a realistic manner.

We here use the Semantic Segmentation Camera attached
to the dashboard of the vehicle to observe the path in
the front of the vehicle. the Semantic Segmentation
Camera sensor functionality provides an carla.Image ob-
ject with the tag information encoded in the red channel.
This is converted with the help of CityScapesPalette in
carla.ColorConverter to apply the tags information and
show picture with the semantic segmentation. Now, know-
ing the color of the road’s encoding gives us the precise
segmentation for it and we can perform feature extraction

on it.

Figure 1. The Semantic Segmentation Dashboard Camera Feed

Other features such as vehicle speed, throttle, steer angle
are directly subscribable from the simulator and are thus
available. The state spaces are thus consistent with the data
that a normal car on a road can access. We aim not to use any
information that is not observable from a real life parallel.

We will be using just the dashboard camera feed for pro-
viding visual inputs for planning and control. The speed
and steer angle in carla work almost similar to real life sce-
narios. On pressing the throttle, the velocity of the vehicle
increases incrementally up to the time the throttle is pressed
and begins to decline at a similar rate when the throttle is not
pressed. Similarly, the steer angle changes incrementally
proportional to the duration of time that a steering com-
mand is applied and slowly comes to 0 degrees if there is
no steering control supplied.

We plan to train the vehicle agent incrementally by increas-
ing the toughness of the task expected gradually. Hence, we
begin with training the vehicle on a perfectly straight road.
We want that the agent is successfully able to follow the
road without colliding with anything or crossing any lines.
The agent must stay in the correct lane and be able to move
parallel to the road. We have used the ’Town01’ for our
simulation as it offers the least complex system of roads to
manoeuvre around. We chose a spot with the longest straight
path in front of it to train here. We spawn the vehicle here
(x = 2.0, y = 315.0, z = 2.0, yaw = 270.0) every time
the vehicle crashes or crosses a line and a new episode needs
to be started. The non-zero value of z coordinate is provided
to avoid collision of the agent with the road at spawn. The
vehicle thus falls a little for a few instants whenever it is
re-spawned. We also introduce some random pertubation to
the x and yaw values so that the vehicle can not just quickly
learn to just move straight but also has incentive to tune the
steering ability to avoid crossing road lines or running over
footpaths.

When the agent learns to ace this very well, we expose it
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to the turns present in the map. We spawn the agent right
before a turn which is not a T-point or a crossing but a
simple right or a left turn. In this manner we would expose
the agent to more and more complex scenarios and expect
that it does learn to stay on the road and not collide or cross
any lines. We would associate a large negative reward for
such crashes and give positive reward primarily for covering
a large distance on the road.

During this phase, we do not introduce any other vehicles
that the agent may have to avoid or coordinate with nor any
pedestrians. We are not taking regard of any speed limits
or traffic signals either but expect the vehicle to move at a
mid range optimal speed and not be very slow or extremely
fast. We would also like that the effect of steering are also
gradual and not very jerky.

4. Approach
The raw input from the dashboard camera is a semantically
segmented image, which when directly used for learning
will lead to a very high dimensional as well as redundant
state-space representation, which will result in negligible
amount of learning even after a lot of training. So, it be-
comes vital to reduce the complexity of the problem to a
large extent.

For this, we use the semantic segmentation image provided
by the dashboard camera to generate a set of features, which
along with velocity, throttle and steer data is used to con-
struct the state space. This state space is still continuous and
thus, in order to discretize it, we use tile coding (Sherstov
and Stone, 2005). This low-dimensional discretized state
space is then used by the RL algorithm Q-learning (Watkins
and Dayan, 1992), which makes online updates after every
frame update in the CARLA simulator.

4.1. Feature extraction

The aim of the sensor inputs to the driving agent is to be able
to properly represent important information about the envi-
ronment. One way to do this is to directly use the raw sensor
data such as the dashboard camera image. However, the
detailed CARLA environment leads to the raw data contain-
ing of very high dimensional information, wherein the input
image at every frame has a dimension (720, 1280, 3), also
including details like weather information and road texture.
Working with such data would require immense amount of
training so that every dimension of the state space is prop-
erly learned and the agent performance can be generalised
to unseen scenarios.

In the past, learning based approaches have been accompa-
nied with a perception module to determine the distances of
the self-vehicle to certain fixed points in the camera frame.
This information, when compactly represented, form very

effective state space features. One way to do this is to detect
the lanes and roads precisely using a bird-eye’s view using
Inverse Perspective Mapping (IPM) on the raw input image,
which makes the distance computation mentioned above
much easier, but as it turns out, this method requires an
accurate knowledge of the location of the camera relative to
the ground and is very sensitive to errors.

Figure 2. Determining left and right distances for feature extraction.
The green and red markers represent the road boundaries and their
distance respectively from the left and right edges of the frame
is computed and normalized using the respective left and right
distances of the blue and orange markers.

To address this problem, we instead use a simple image
processing technique to determine two values. We construct
a horizontal line [Fig. (2)] at a certain fixed location in the
image for every frame, mark the point of intersection of the
left (right) edge of the road and the horizontal line, and com-
pute the distance of the left (right) point from the leftmost
(rightmost) point on the horizontal line in the frame. This is
further normalised to a value between 0 and 1 based on two
limiting markers for the left distance and right distance.

Other than the two distances, we obtain the velocity, throttle
and steer value during driving and treat them as parts of
the state. The precise location of the car is also obtained
(equivalent to having the car equipped with HD Maps/GPS)
which will be used for reward modelled as explained in
Section 5.

4.2. State encoding

After feature extraction, we restrict our state space input to
5 dimensional data consisting of left distance, right distance,
velocity, throttle and steer. Note that while throttle and steer
are actually control inputs, but their value at a particular
instant is part of the state and it is the change in throttle and
steer that govern the controls of the car.

While the representation complexity has been substantially
reduced, still considering the fact that all five of these are
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continuous variables, there is a need for discretization as the
tabular method Q-learning would require a finite state space.
For this purpose, we use 1-dimensional tile coding , in
which each state is representation in terms of the discretized
tiles they belong to across multiple tilings. The width and
the offset of the tiles are hand-picked in order to make the
discretization as uniform as possible. Tile coding has been
found to be convergent with the algorithm Q-learning, thus
the choice. Fig. 3 represents the discrete tilings created for
discretization. This discretized representation is used as the
state space for the problem.

Figure 3. Visual representation of the five tilings

4.3. Q-learning

With access to the state s and reward function r, the objective
of reinforcement learning is to find the optimal policy π∗

that optimizes the expected future total reward. In order to
find the optimal policy for the discretized state space, we
use the Q-learning [1] algorithm.

The fact that Q-learning can be used as an online algorithm
and is very computationally efficient allowed us to make the
agent learn real-time at a good enough frame rate.

5. Experiments and Results
5.1. Reward Function

We have modelled the reward in 4 parts. Three of them
are there to regulate the state values of velocity, steer angle
and throttle, while the fourth component deals with giving

Algorithm 1 Q-learning
1: Parameters: step size α ∈ (0, 1], ε > 0
2: Initialize Q(s, a), for all s ∈ S+, a ∈ A(s), arbitrarily

except that Q(terminal, ·) = 0.
3: for each step of episode do
4: Choose A ε-greedily from S using policy derived

from Q
5: Take action A, observe R, S′ from CARLA Environ-

ment
6: Q(S,A) ← Q(S,A) + α[R + γmaxaQ(S′, a) −

Q(S,A)]
7: S ← S′

8: end for

a positive reward for distance covered. An additional large
negative reward is given whenever there is a collision or a
line cross, essentially when the vehicle wanders off-road.
Each of the rewards are combined together by taking a
weighted summation, the weights for which were decided
over multiple iterations to be able to capture the optimal
behaviour appropriately.

The first component corresponds to the velocity off the ve-
hicle. We form a trapezoidal reward function to reward
velocity values between 10 and 30km/h. Another fixed
negative reward is added to prevent very low values of ve-
locity so that the agent not just stop fully.

The second component is to regularise values for small
values of steer by a small amount. This is to ensure that the
steering angle does not oscillate near the small values.

The third component of reward function deals with the throt-
tle values. We penalise large values of the throttle as well as
near zero values for it.

For the distance component, we provide a positive reward
whenever the agent moves a certain fixed distance. Here,
we provide a reward of 15 for every 10 metres travelled.
Here, loc1 is initialised at every agent restart. In the game
loop, loc2 keeps updating and stored the latest position of
the vehicle. Whenever the distance between, loc1 and loc2
exceeds 10 metres, we give the reward and update loc1 as
loc2.

5.2. Training Details

The training is carried out with the following set of parame-
ters for Q-learning:

α = 0.1, ε = 0.9 (1)

The five set of tilings have been provided the widths and
offsets as shown in Table 1.

The training was done for a total of 257 episodes with a
total training time of approximately 4 hours on the GPU
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Algorithm 2 Reward Function
rewardV = 0, rewardT = 0, rewardS = 0

velFac = 0.02
if vel < 3 then

rewardV + = -0.02
else if vel < 10 then

rewardV + = velFac*vel
else if vel < 30 then

rewardV + = velFac*10
else

rewardV + = velFac*(40-vel)
end if

steerFac = 5.0
if abs(steer) < 0.3 then

rewardS − = steerFac*(steer**2)
end if

throttleFac = 3.0
rewardT − = throttleFac*((throttle-0.2)2)
if throttle > 0.5 then

rewardT ∗ = (throttle+0.5)
end if
if throttle < 0.2 then

rewardT ∗ = 2
end if

if distance(loc2, loc1) > 10 then
reward + = 15
loc1 = loc2

end if

NVIDIA GeForce GTX 1650 Max-Q and the results are as
shown in the next subsection.

5.3. Results

After training on the CARLA environment, the agent was
able to successfully drive without collisions and along the
track of 300 metres staying in the correct lane at all times.
The total reward accumulated is shown below, along with the
individual reward contributions from the four components
of the reward function. Note that the most significant posi-
tive reinforcement comes from the distance reward, which
incentives the agent to keep covering more distance. At the
same time, the negative throttle reward is kept such that the
throttle is kept as a positive but low value for most times,
which makes it easier to control the vehicle in case of sudden
changes in the state.

Table 1. Tile coding details

TILING WIDTH OFFSET

1 10 0.1
2 10 0.23
3 30 0.03
4 10 0.42
5 14 0.14

Figure 4. Total Reward

6. Discussion and Future Work
The project has been a successful demonstration of the fact
that online learning algorithms like Q-learning can be used
to make the agent learn to drive in an ideal city environment.
The Town 01 environment in CARLA is a fairly complicated
one, and while the initial plan was to construct a map on our
own which would have been relatively easier to work with
and then move on to this environment, we figured out that
the RoadRunner package in CARLA required us to build it
from source, requiring 70 GBs of download. So, we directly
started working with this map and it turned out fairly well.
There are several improvements and developments that can
be done taking this project forward, some of which include:

• While the agent was able to deal with small turns and
straight roads impeccably after training, it still was un-
able to drive on regions with very sharp turns. Through
inspection, it was clear that the agent was learning and
given more training time, the agent might be able to
perform better. The reward function could have been
modelled better with special consideration for turns
beyond a certain angle.

• The state space representation was a fairly straight-
forward one. More features can be introduced in the
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Figure 5. Contribution of Individual Reward Components

representation, which might be able to improve the
agent’s performance even further.

• We played with creating three road masks for detecting
the possible turns ahead. One for detecting if there is a
way straight and similarly two for right and left turns.
We just had to take a dot product of the road and the
mask and perform thresholding on the returned values
to determine the turns. This will help the agent get to
understand and choose a path based on the choices it
has for a multi-turn. Since we could not get to tackling
a T-point, we have not used this function.

• In this project, we have demonstrated the capability of
autonomous driving using Q-learning in an obstacle-
free environment. In future, a more complicated per-
ception module can be used to be able to deal with
dynamic obstacles in the environment like other vehi-
cles, pedestrians, etc.

• We have neglected the existence of traffic regulations
like speed limits and traffic signals in this project, but
this can be easily incorporated and worked with by
appropriately detecting and decided on the controls
should such a situation arise.

• While Q-learning has shown some promising results, it
will be interesting to try Deep Reinforcement Learning
methods for the same and the future tasks. The major
barrier in this will be of computational complexity as
the model will have to be trained online with increasing
data. A right balance between model complexity and
performance expectations need to be met here
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