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I. HYPERPARAMETER DETAILS

A hyperparameter search was performed to find the best
set of hyperparameters for each algorithm following the
procedure used by EPyMARL [1]. We chose the Simple
Navigation scenario to conduct the searches due to it’s
simplicity as it allows the algorithms to focus on learning the
underlying dynamics, safety mechanisms, and communica-
tion which remains consistent across all scenarios.The search
was performed across 2 seeds for each algorithm. For each
set of hyperparameters we evaluated, we trained MAPPO
for 4,000,000 time-steps and the value based algorithms
for 400,000 time steps. We performed a grid-search over
the range of hyperparameters as in Table I and used the
evaluation return averaged across the seeds at each time-step
to select the hyperparameters in Table II which are the final
hyperparameters we selected for each algorithm. We selected
the hyperparameters in Table I to search over based on the
hyperparameters [1] analyzed.

Algorithm

Hyperparameters VDN QMIX QMIX NS MAPPO

Learning Rate {1,3,5} *
1e-4

{1,3,5} *
1e-4

{1,3,5} *
1e-4

{2,4} *
1e-4

Target Update 200/0.01 200/0.01 200/0.01 200/0.01
Hidden Dimension 64/128 64/128 64/128 64/128
Evaluation Epsilon 0.0/0.05 0.0/0.05 0.0/0.05 –
Epsilon Anneal 50k/200k 50k/200k 50k/200k –
Entropy Coefficient – – – {1,10} *

1e-3
n-step – – – 5/10
Standardize Rewards Yes/No Yes/No Yes/No Yes/No
Network Type GRU GRU GRU GRU

TABLE I: Hyperparameters searched over for each algo-
rithm. For Taget Update, 200 is used for hard updates while
0.01 is used for soft updates.

†Denotes equal contribution; This work was supported in part by the
Army Research Lab under Grants W911NF-17-2-0181 (DCIST CRA) and
W911NF-20-2-0036

Algorithm

Hyperparameters VDN QMIX QMIX NS MAPPO

Learning Rate 0.0003 0.0001 0.0005 0.0002
Target Update 200 0.01 200 200
Hidden dimension 128 128 64 128
Evaluation epsilon 0.0 0.05 0.0 –
Epsilon Anneal 50k 50k 50k –
Entropy Coefficient – – – 0.01
n-step – – – 10
Standardize Rewards No No No No
Network Type GRU GRU GRU GRU

TABLE II: Final hyperparameters selected for each algo-
rithm.

II. ADDITIONAL EVALUATION RETURNS DURING
TRAINING

Fig. 1: The full 25 million timesteps for MAPPO. We also in-
clude VDN for comparison as VDN was the best performing
algorithm for all scenarios after 5 million timesteps. MAPPO
takes about the same amount of time as VDN to converge but
is much more influenced by its seed than VDN and, except
for warehouse, converges to a policy with lower performance.



Fig. 2: Evaluation returns of VDN with the safe CBFs vs.
VDN with the default CBFs during training.

III. DETAILED SCENARIO INFORMATION

In all scenarios, robots have 5 actions available to them:
they can move left, right, up, down, or stop. After selecting
an action, they move in the specified direction for a specified
amount of time before selecting another action. MARBLER
can support different action spaces but all current scenarios
have this setup.

A. Simple Navigation

(a) Simple Navigation Running in Simulation

(b) Simple Navigation Running in Robotarium

1) Scenario Details: This is a fully homogeneous scenario
where all robots try to get as close to a known location
without colliding. The robots start at random locations in
the left side of the environment and the destination will be
a random location in the right side of the environment. This
scenario is easy to learn, making it useful to use to quickly
get robot up and running and to debug algorithms when they
are not working. The robots’ observations consist of their
current location and the location of the destination point.
Each episode ends after a specified number of steps.

Following the taxonomy described in [2], this scenario
consists of robots that are physically identical and share
the same objective which is to reach the target and avoid
collision with the other robots. However, in our experiments,
they have different behavior because we either trained the
robots with agent ids or without parameter sharing.

2) Scenario Hyperparameters used for Hyperparameter
Searches:

• Number of Robots: 4
• Movement Speed: ∼21cm/second
• Episode Steps: 51
• Communication: We gave the robots full communica-

tion so each robot had all other robots’ observations
concatenated together

B. Predator Capture Prey

(a) Predator Capture Prey Running in Simulation

(b) Predator Capture Prey Running in the Robotarium



1) Scenario Details: Inspired by the Predator Capture
Prey scenario in [3], the objective of this scenario is to
make heterogeneous robots collaborate to capture the prey
as quickly as possible. There are n sensing robots, m capture
robots and k prey. The robots start in random locations in
the left side of the environment and the preys are randomly
generated in the right side of the environment. The sensing
robots have a sensing radius > 0 and the capture robots
have a capture radius > 0. Both types of robots have their
locations in their observation space. If there is a prey within
a sensing robot’s sensing radius, the prey will turn blue
and the exact location of the prey will also be appended to
the sensing robot’s observation. However, the capture robot
will never have the location of the prey appended to their
observation so sensing robots and capture robots must work
together to capture the prey. To capture a prey, a capture
robot must stop once the prey is within its capture radius.

The episode ends once all preys have been captured or
the episode times out. To incentivize the robots to capture
the prey as quickly as possible, they take a small penalty
every step the episode does not terminate. These robots have
different capabilities and hence, differ in their behavior but
share the same objective.

2) Selected Hyperparameters for Experiments:
• Number of Robots: 2 sensing, 2 capture
• Number of Prey: 6
• Movement Speed: ∼21cm/second
• Sensing Radii: 45cm
• Capture Radii: 25cm
• Sensing Reward: 1
• Capture Reward: 5
• Step Penalty: .05
• Max Episode Steps: 81
• Communication: We gave the robots full communica-

tion so each robot had all other robots’ observations
concatenated together.

C. Warehouse

1) Scenario Details: N/2 red robots and N/2 green robots
start at random locations in the environment. The robots then
navigate to the zone of their color on the right side of the
environment to receive a load and obtain a small reward.
They must then unload in their color zone on the left side
of the environment which receives a large reward.

This scenario has fixed-length episodes so the robots only
goal is to navigate to their respective zones as many times
as possible. Because the optimal paths to the red and green
loading zones intersect, optimal robots must learn to avoid
collisions as the barrier certificates will slow them down
significantly. Therefore, this scenario requires robots to learn
multi-robot path finding [4].

The robots’ observations consists of their current location
and whether or not they are loaded. The robots are physically
identical but with different goals and different behavior.

2) Selected Scenario Hyperparameters for Experiments:
• Number of Robots: 6
• Movement Speed: ∼21cm/second

(a) Warehouse Running in Simulation

(b) Warehouse Running in the Robotarium

• Load Reward: 1
• Unload Reward: 3
• Episode Steps: 101
• Communication: We gave the robots full communica-

tion so each robot had all other robots’ observations
concatenated together.

D. Material Transport

1) Scenario Details: N fast robots and M slow robots start
at random locations within the purple zone and try to unload
two zones as quickly as possible: one nearby and one far
away. Both zones start with a random amount of material
drawn from specified distributions. The robots must travel
to the zone to receive a load and travel back to the purple
area to unload. The fast robots can only carry a small load
at once while the slow robots can carry a large load.

The episode ends once all of the material is transported to
the purple zone or or the episode times out. To incentivize
the robots to unload al material as quickly as possible,
they take a small negative penalty every step the episode
does not terminate. The robots’ observations consist of
their current location and each zone’s remaining load. This
scenario features two major challenges: first robots must
navigate to the zones as quickly as possible meaning that
they should not collide, again making this a multi-robot
path finding scenario. However, the path finding is easier
in this scenario than in Warehouse because the robots can
take routes that do not necessarily intersect. However, this



(a) Material Transport Running in Simulation

(b) Material Transport Running in the Robotarium

scenario also requires robots to collaborate to make use of
their respective capabilities to unload the zones as quickly
as possible, meaning the scenario also requires the robots to
effectively task allocate.

2) Scenario Hyperparameters for Experiments:
• Number of Fast Robots: 2
• Number of Slow Robots: 2
• Fast Robot Movement Speed: ∼18cm/second
• Slow Robot Movement Speed: ∼6cm/second
• Fast Robot Loading Capacity: 5
• Slow Robot Loading Capacity: 15
• Load Reward: .025 * Amount Loaded
• Unload Reward: .075 * Amount Unloaded
• Step Penalty: 0.1
• Communication: This scenario has full communication

with limited bandwidth. Similar to how agents commu-
nicate in [5], robots can select a message from 0-3 to
send to all other robots through their action space.

E. Arctic Transport

1) Scenario Details: Drones attempt to guide the water
robots and ice robots to the goal location as quickly as
possible over ground tiles (white), ice tiles (light blue), and
water tiles (dark blue). Drones move fast over any tile, ice
robots move fast over ice but slow over water, and water
robots move fast over water but slow over ice. Ice and water
robots move at the same speed on ground. Ice and water
robots only know their location, the goal location, and the

(a) Arctic Transport Running in Simulation

(b) Arctic Transport Running in the Robotarium

tile type that they are on. Drones know their location, the
goal location, and the 8 surrounding tile types.

The robots start in the middle of the bottom row, which is
always ground. The goal is randomly placed in the top row.
Each remaining tile is randomly chosen to be one of the three
tile types. Robots are only rewarded based on how far the
ice/water robots are from the goal zone so optimal drones
should guide the ice/water robots. This is a Multi-Robot Path
Planning scenario [6] where drones must find optimal paths
to the goal zone and communicate it to the ice/water robots.

The episode ends once both the water and the ice robots
reaches the goal or the episode times out. To incentivize the
robots to reach the goal as quickly as possible, they take
a small penalty every step the episode does not terminate.
These robots are physically different with different behavior
but share the same objective.

2) Scenario Hyperparameters for Experiments:
• Number of Drones: 2
• Number of Ice Robots: 1
• Number of Water Robots: 1
• Fast Movement Speed: ∼25cm/second
• Normal Movement Speed: ∼17cm/second
• Slow Movement Speed: ∼8.5cm/second
• Reward: -0.05*(Number of Ice or Water Robots that

haven’t reached the goal) + -0.075*(
∑

(Distance of Ice
and Water Robots to Goal)2)

• Max Episode Steps: 61
• Communication: We gave the robots full communication



so each robot has all information from all other robots. REFERENCES
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“Benchmarking multi-agent deep reinforcement learning algorithms
in cooperative tasks,” in Proceedings of the Neural Information
Processing Systems Track on Datasets and Benchmarks (NeurIPS),
2021. [Online]. Available: http://arxiv.org/abs/2006.07869

[2] M. Bettini, A. Shankar, and A. Prorok, “Heterogeneous multi-robot
reinforcement learning,” arXiv preprint arXiv:2301.07137, 2023.

[3] E. Seraj, Z. Wang, R. Paleja, D. Martin, M. Sklar, A. Patel, and
M. Gombolay, “Learning efficient diverse communication for coop-
erative heterogeneous teaming,” in International conference on au-
tonomous agents and multiagent systems, 2022.

[4] R. Stern, N. Sturtevant, A. Felner, S. Koenig, H. Ma, T. Walker, J. Li,
D. Atzmon, L. Cohen, T. Kumar et al., “Multi-agent pathfinding: Defi-
nitions, variants, and benchmarks,” in Proceedings of the International
Symposium on Combinatorial Search, 2019.

[5] I. Mordatch and P. Abbeel, “Emergence of grounded compositional
language in multi-agent populations,” CoRR, vol. abs/1703.04908,
2017. [Online]. Available: http://arxiv.org/abs/1703.04908

[6] H. Bae, G. Kim, J. Kim, D. Qian, and S. Lee, “Multi-robot path plan-
ning method using reinforcement learning,” Applied sciences, vol. 9,
no. 15, p. 3057, 2019.


